From e3a7925ec4a8adb30348ebe2c114faff0a49a027 Mon Sep 17 00:00:00 2001 From: zyimm Date: Sun, 5 Nov 2023 17:14:51 +0800 Subject: [PATCH] =?UTF-8?q?=F0=9F=91=B6=E7=AE=97=E6=B3=95=E4=B8=AD?= =?UTF-8?q?=E7=9A=84=E7=A9=BA=E9=97=B4=E5=A4=8D=E6=9D=82=E5=BA=A6=E4=B8=8E?= =?UTF-8?q?=E6=97=B6=E9=97=B4=E5=A4=8D=E6=9D=82=E5=BA=A6=E7=90=86=E8=A7=A3?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- _posts/算法/algorithm-characteristic.md | 228 ++++++++++++++++++++++++ 1 file changed, 228 insertions(+) create mode 100644 _posts/算法/algorithm-characteristic.md diff --git a/_posts/算法/algorithm-characteristic.md b/_posts/算法/algorithm-characteristic.md new file mode 100644 index 0000000..34474fe --- /dev/null +++ b/_posts/算法/algorithm-characteristic.md @@ -0,0 +1,228 @@ +--- +title: 👶算法中的空间复杂度与时间复杂度理解 +date: 2023-11-04 +tags: 算法 +--- + +## 算法的本质 + +算法(algorithm)的本质是将问题划分为一系列可执行的步骤,并通过合理的计算和操作来达到预期的结果。同一个问题可以使用不同算法解决,但计算过程中消耗的时间和资源可能千差万别。 + +那如何比较不同算法之间的优劣呢?目前分析算法主要从时间和空间两个维度进行。 + +1. 时间维度:时间复杂度(time complexity),算法需要消耗的时间。 +2. 空间维度:空间复杂度(space complexity),算法需要占用的内存空间。 + +因此,分析算法利弊主要从时间复杂度和空间复杂度进行。大多时候二者不可兼得,有时用时间换空间,有时用空间换时间,来满足所在场景需要! + +## 1. 时间复杂度 Time Complexity + +时间复杂度是衡量算法执行时间的增长率,表示算法在处理输入规模增大时所需的时间。时间复杂度通常用大O符号(O)表示,后跟一个表示增长率的函数.常见的时间复杂度有:O(1)、O(log n)、O(n)、O(n log n)、O(n^2)等。 + +### O(1) (常数时间 Contant Time) + +常数时间算法不会随数据量变化而变,时间固定。如下算法: + +```php +/** + * 获取数组的第一个元素 + */ +function array_first(array $array) { + return $array[0] ?? null; +} + +// 示例用法 +$array = [1, 2, 3, 4, 5]; +$result = array_first($array); +echo $result; // 输出:1 +``` + +该函数执行所需时间与 `$array` 数组大小无关。无论数组有十个元素,还是一万个元素,该函数都只检查数组第一个元素。数据量变大时,算法所需时间保持不变。 + +为简便起见,用`O(1)`来表示常数时间。 + +### O(n)(线性时间 Linear Time) + +线性时间复杂度是最好理解的。随着数据量增加,耗费时间同步增加。如下算法: + +```php +/** + * 数组求和 + */ +function array_sum_items(array $array) { + $sum = 0; + foreach ($array as $element) { // 遍历数组中的每个元素 + $sum += (int)$element; // 将元素累加到总和中 + } + return $sum; +} + +// 示例用法 +$array = [1, 2, 3, 4, 5]; +$result = array_sum_items($array); +echo $result; // 输出:15 +``` + +为简便起见,用`O(n)`表示线性时间复杂度。 + +### O(n^2)(平方时间 Quadratic Time) + +平方时间(Quadratic Time)也称为n的平方,平方时间复杂度算法耗费时间是数据量的平方。参考以下代码: + +```php +function array_multiplication(array $array) { + $result = []; + foreach ($array as $element1) { // 遍历数组中的每个元素 + foreach ($array as $element2) { // 遍历数组中的每个元素 + $product = $element1 * $element2; // 计算两个元素的乘积 + $result[] = $product; // 将乘积添加到结果数组中 + } + } + return $result; +} + +// 示例用法 +$array = [1, 2, 3]; +$result = array_multiplication($array); +print_r($result); // 输出:Array ( [0] => 1 [1] => 2 [2] => 3 [3] => 2 [4] => 4 [5] => 6 [6] => 3 [7] => 6 [8] => 9 ) +``` + +上述代码中,`array_multiplication`函数接受一个数组作为输入,并计算数组中每两个元素的乘积,并将乘积存储在结果数组中。算法使用了嵌套的foreach循环来遍历数组中的每个元素,因此算法的执行时间与输入数组大小的平方成正比。所以它的时间复杂度是O(n^2),即平方时间复杂度。 + +常规来讲同一问题下线性时间复杂度要好于平方时间复杂度。 + +### O(log n)(对数时间 Logarithmic Time) + +对数时间(Logarithmic Time)也称为n的对数,对数时间复杂度算法耗费时间与数据量呈现对数走势。参考以下代码: + +```php +function array_add_log(int $n) { + $result = 0; + for ($i = 1; $i <= $n; $i *= 2) { // 每次将 i 乘以 2 + $result++; + } + return $result; +} + +// 示例用法 +$n = 16; +$result = array_add_log($n); +echo $result; // 输出:5 +``` + +上述代码中,`array_add_log`函数接受一个整数n作为输入,并使用一个循环来以2的幂次递增的方式遍历从1到n的范围。在每次循环迭代中,$i的值将乘以2。算法的循环次数取决于$i的增长速度,即取决于n的对数走势。因此,该算法的时间复杂度是O(log n),即对数时间复杂度。 + +### O(n log n)( 准线性时间 Quasilinear Time) + +准线性时间算法比线性时间算法效率低,但比平方时间算法效率高。如下代码: + +```php +function array_add_near_line(array $array) { + $length = count($array); + $result = 0; + for ($i = 0; $i < $length; $i++) { + $result += $array[$i]; + } + return $result; +} + +// 示例用法 +$array = [1, 2, 3, 4, 5]; +$result = array_add_near_line($array); +echo $result; // 输出:15 +``` + +上述代码中,`array_add_near_line`函数接受一个数组作为输入,并遍历数组中的每个元素,将它们累加到结果中。该算法的执行时间与输入数组的大小成正比,因此它的时间复杂度可视为准线性时间复杂度。 + +## 2. 空间复杂度 Space Complexity + +空间复杂度是衡量算法在执行过程中所需的额外空间的度量方式。它描述了算法在处理输入规模增大时所需的额外内存空间。 + +空间复杂度通常用大O符号(O)表示,后跟一个表示空间占用的函数。它表示算法所需的额外空间随着输入规模的增加而增加的趋势, 常见的空间复杂度有: +O(1)、O(n)、O(n^2)、O(log n)。从名字看出空间复杂度和时间复杂度表示差不多,即:常数复杂度、线性复杂度、平方复杂度、指数复杂度。 + +### O(1) (常数空间 Contant Space) + +常数空间复杂度算法内存占用不会随数据量变化而变,占用空间固定。如下算法: + +```php +function array_sum_contant(int $n) { + $sum = 0; + for ($i = 1; $i <= $n; $i++) { + $sum += $i; + } + return $sum; +} + +// 示例用法 +$n = 5; +$result = array_sum_contant($array); +echo $result; // 输出:15 +``` + +在上面的代码中,`array_sum_contant`函数接受一个整数n作为输入,并计算从1到n的所有数字的总和。该算法只使用了一个额外的变量$sum来存储计算结果,而不随着输入规模的增加而增加额外的空间。因此,该算法的空间复杂度是O(1),即常数空间复杂度。 + +### O(n)(线性空间 Linear Spance) + +线性空间复杂度是最好理解的。随着计算数据量增加,耗费空间同步线性增加。如下算法: + +```php +function array_linear(int $n) { + $result = []; + for ($i = 1; $i <= $n; $i++) { + $result[] = $i; + } + return $result; +} + +// 示例用法 +$n = 5; +$result = array_linear($n); +print_r($result); // 输出:Array ( [0] => 1 [1] => 2 [2] => 3 [3] => 4 [4] => 5 ) +``` + +上面的代码中,`array_linear`函数接受一个整数n作为输入,并生成一个包含从1到n的所有数字的数组。该算法使用了一个额外的数组$result来存储生成的数字,其大小与输入规模n成正比。因此,该算法的空间复杂度是O(n),即线性空间复杂度。。 + +### O(n^2)(平方空间 Quadratic Space) + +平方空间(Quadratic Space)也称为n的平方,随着计算数据量增加,占用空间是增加数量平方。参考以下代码: + +```php +function array_square(int $n) { + $result = []; + for ($i = 1; $i <= $n; $i++) { + for ($j = 1; $j <= $n; $j++) { + $result[] = $i * $j; + } + } + return $result; +} + +// 示例用法 +$n = 3; +$result = array_square($n); +print_r($result); // 输出:Array ( [0] => 1 [1] => 2 [2] => 3 [3] => 2 [4] => 4 [5] => 6 [6] => 3 [7] => 6 [8] => 9 ) +``` + +上面的代码中,`array_square`函数接受一个整数n作为输入,并生成一个包含从1到n的所有数字的平方的数组。该算法使用了一个额外的数组$result来存储生成的结果,其大小与输入规模n的平方成正比。因此,该算法的空间复杂度是O(n^2),即平方空间复杂度。 + +### O(log n)(对数空间 Logarithmic Space) + +```php +function array_space_log(int $n) { + $result = []; + $i = 1; + while ($i <= $n) { + $result[] = $i; + $i *= 2; + } + return $result; +} + +// 示例用法 +$n = 10; +$result = logarithmicSpaceAlgorithm($n); +print_r($result); // 输出:Array ( [0] => 1 [1] => 2 [2] => 4 [3] => 8 ) +``` + +上述代码中,`array_space_log`函数接受一个整数n作为输入,并生成一个包含从1到n之间的所有2的幂次的数组。该算法使用了一个额外的数组$result来存储生成的结果,其大小与输入规模n的对数成正比。因此,该算法的空间复杂度是O(log n),即对数空间复杂度。